miércoles, 26 de noviembre de 2014

4.5 Regla de la cadena

En cálculo, la regla de la cadena es una fórmula para la derivada de la composición de dos funciones. Tiene aplicaciones en el cálculo algebraico de derivadas cuando existecomposición de funciones

Demostración de la regla de la cadena

Sea
h\left(x\right) = \left(f \circ g\right)\left(x\right).
Esto es entonces
h\left(x\right) = f\left(g\left(x\right)\right).
Aplicando la definición de derivada se tiene
\frac {\text{d}h}{\text{d}x} = \lim_{\Delta x \rightarrow 0} \frac{h(x + \Delta x) - h(x)}{\Delta x}.
Donde queda
= \lim_{\Delta x \rightarrow 0} \frac{f(g(x + \Delta x)) - f(g(x))}{\Delta x}.
Equivalentemente, multiplicando y dividiendo entre g\left(x+\Delta x\right)-g\left(x\right) (esta demostración solo vale cuando g\left(x+\Delta x\right)-g\left(x\right) es distinto de cero , por ejemplo si g(x) fuera constante no se cumple)
 = \lim_{\Delta x \rightarrow 0} \frac{f(g(x + \Delta x)) - f(g(x))}{\Delta x}  \cdot \frac{g(x+\Delta x)-g\left(x\right)}{g(x+\Delta x)-g\left(x\right)}.
= \lim_{\Delta x \rightarrow 0} \frac{f(g(x + \Delta x)) - f(g(x))}{g(x+\Delta x)-g\left(x\right)}  \cdot \frac{g(x+\Delta x)-g\left(x\right)}{\Delta x}.
= \frac{\text{d}f}{\text{d}g}\cdot\frac{\text{d}g}{\text{d}x}.

No hay comentarios:

Publicar un comentario